Purpose

Demonstrate how to create a map of model output.

Map

Use ggplot to create a map from the example data included in BCGcalc.

The example data only includes data from Washington.

# Packages
library(BCGcalc)
library(ggplot2)
library(readxl)
library(BioMonTools)

# Calculate BCG model
## Calculate Metrics
df_samps <- read_excel(
  system.file("./extdata/Data_BCG_PugLowWilVal.xlsx",
              package="BCGcalc"),
  guess_max = 10^6)
## Run Function
myDF <- df_samps
col_add_char <- c("INFRAORDER", 
                  "HABITAT", 
                  "ELEVATION_ATTR", 
                  "GRADIENT_ATTR",
                  "WSAREA_ATTR", 
                  "HABSTRUCT")
col_add_num <- "UFC"
myDF[, col_add_char] <- NA_character_
myDF[, col_add_num] <- NA_integer_
myCols <- c("Area_mi2", 
            "SurfaceArea", 
            "Density_m2", 
            "Density_ft2")
df_metval <- metric.values(myDF, 
                           "bugs",
                           fun.cols2keep = myCols) 
#> Joining with `by = join_by(SAMPLEID, INDEX_NAME, INDEX_CLASS)`
## Import Rules
df_rules <- read_excel(
  system.file("./extdata/Rules.xlsx",
              package="BCGcalc"),
  sheet="Rules") 
## Calculate Metric Memberships
df_metmemb <- BCG.Metric.Membership(df_metval, 
                                    df_rules,
                                    col_SITE_TYPE = "INDEX_REGION")
## Calculate Level Memberships
df_levmemb <- BCG.Level.Membership(df_metmemb, 
                                   df_rules)
## Run Function
df_levels <- BCG.Level.Assignment(df_levmemb)


# Add Lat-Long
## Get unique stations
df_stations <- as.data.frame(unique(df_samps[, c("SampleID",
                                                 "Latitude",
                                                 "Longitude"
                                                 )]))

## Merge
df_map <- merge(df_levels,
                df_stations,
                by.x = "SampleID",
                by.y = "SampleID",
                all.x = TRUE)
## Level1 Name to Character
df_map$Primary_BCG_Level <- as.character(df_map$Primary_BCG_Level)

# Palette, Color Blind
## http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
pal_cb <- c("#E69F00", 
            "#56B4E9", 
            "#009E73",
            "#F0E442", 
            "#0072B2",
            "#D55E00", 
            "#CC79A7", 
            "#999999")
pal_bcg_old <- c("green", 
                 "cyan", 
                 "blue",
                 "orange", 
                 "red")
pal_bcg <- c("blue", 
             "green",
             "gray", 
             "yellow", 
             "dark orange", 
             "red")

# Shapes
shp_solid <- c(17, 16) # solid triangle and circle

# Map
## Map of OR and WA
m1 <- ggplot(data = subset(map_data("state"),
                           region %in% c("washington"))) + 
  geom_polygon(aes(x = long, y = lat, group = group)
               , fill = "gray90"
               , color = "black") +
  coord_fixed(1.3) + 
  theme_void() +
  # Add Points
  geom_point(data = df_map,
             aes(Longitude,
                 Latitude,
                 shape = INDEX_NAME,
                 color = Primary_BCG_Level),
             na.rm = TRUE) +
  # Change shape
  scale_shape_manual(name = "Site Type", 
                     values = shp_solid) +
  # Change colors
  scale_colour_manual(name = "Level 1 Assignment", 
                      values = pal_bcg) + 
  # Map Title
  labs(title="Pacific Northwest BCG",
       subtitle="Example Samples, WA only") +
  theme(plot.title = element_text(hjust = 0.5),
        plot.subtitle = element_text(hjust=0.5))

## Display Map
m1