The output of this function to return 1.Weighted Average, 2. cdf_Abundance based, 3. cdf_ presence/absence based; 4. ecdf weighted, 5. cdf weight new; 6. Linear logistic regression, 7. quadratic logistic 8. GAM 5~7 using full data range; 9~11. repeat 6~8 but uses observed range for each single taxon; 12 Count. 13. Raw quantiles. Requires Hmisc for wtd.quantile() and Ecdf() and mgcv to gam().

taxon.response.sort(df1 = df1, xvar = "Conductivity", cutoff = 25,
  region = "all", mtype = 3, dense.N = 201, plot.pdf = F,
  xlabs = "Specific conductivity (uS/cm)", add.map = FALSE,
  GIS.cord = c("LONG_DD", "LAT_DD"), extirpation = NULL,
  maintext = "Macroinvertebrates response to specific conductivity",
  log.x = TRUE, rounder = 0, taus = c(0, 95, 100), nbin = 61,
  sort.vect = sort.vect, wd = getwd())

Arguments

df1

data frame

cutoff

a required minimum sample size for calculation

region

a subregion code to name the final output files

mtype

could be 1 to 3, indicating which regression model to use; default = 3.

dense.N

is the number of areas to cut into in the calculation of area under the curve

plot.pdf

to decide if we want species vs. env plots options "none", "pdf", "tiff"

add.map

to decide if a map should be added before plots.

maintext

title of the multiplots area

log.x

if xvar should be logtransformated

rounder

xvar rounder, default = 0

taus

determine the output the percentile of env variable

nbin

number of bins for logits

sort.vect

when plot, sort the taxa list according to a vector called file called sort.vec

wd

Working directory for saving files.

xvar.

xvariable, could be column index or name

Value

Output to the screen for each taxon as it is completed. CDF and GAM plots are saved to the specified directory in subfolders ("cdf" and "gam"). 1.Weighted Average, 2. cdf_Abundance based, 3. cdf_ presence/absence based; 4. ecdf weighted, 5. cdf weight new; 6. Linear logistic regression, 7. quadratic logistic 8. GAM 5~7 using full data range; 9~11. repeat 6~8 but uses observed range for each single taxon; 12 Count. 13. Raw quantiles

Examples

switch0 <- 1 ecolab <- ifelse (switch0 ==1, "eco69", "eco70") unitlab <- expression(paste("SO"[4]^{2-phantom()}," + HCO"[3]^{-phantom()}," (mg/L)")) full.results <- taxon.response.sort(df1 = df1, xvar = "lgSO4HCO3", cutoff = 25, region = ecolab , mtype = 3, dense.N = 201, plot.pdf = T, xlabs = unitlab, add.map = F, , maintext = "" , GIS.cord = c("Long_DD", "Lat_DD"), log.x = TRUE, rounder = 0, taus = c(0,95,100), nbin = 61, sort.vect = taxalist , wd=getwd())
#> [1] 1
#> [1] 2
#> [1] 3
#> [1] 4
#> [1] 5
#> [1] 6
#> [1] 7
#> [1] 8
#> [1] 9
#> [1] 10
#> [1] 11
#> [1] 12
#> [1] 13
#> [1] 14
#> [1] 15
#> [1] 16
#> [1] 17
#> [1] 18
#> [1] 19
#> [1] 20
#> [1] 21
#> [1] 22
#> [1] 23
#> [1] 24
#> [1] 25
#> [1] 26
#> [1] 27
#> [1] 28
#> [1] 29
#> [1] 30
#> [1] 31
#> [1] 32
#> [1] 33
#> [1] 34
#> [1] 35
#> [1] 36
#> [1] 37
#> [1] 38
#> [1] 39
#> [1] 40
#> [1] 41
#> [1] 42
#> [1] 43
#> [1] 44
#> [1] 45
#> [1] 46
#> [1] 47
#> [1] 48
#> [1] 49
#> [1] 50
#> [1] 51
#> [1] 52
#> [1] 53
#> [1] 54
#> [1] 55
#> [1] 56
#> [1] 57
#> [1] 58
#> [1] 59
#> [1] 60
#> [1] 61
#> [1] 62
#> [1] 63
#> [1] 64
#> [1] 65
#> [1] 66
#> [1] 67
#> [1] 68
#> [1] 69
#> [1] 70
#> [1] 71
#> [1] 72
#> [1] 73
#> [1] 74
#> [1] 75
#> [1] 76
#> [1] 77
#> [1] 78
#> [1] 79
#> [1] 80
#> [1] 81
#> [1] 82
#> [1] 83
#> [1] 84
#> [1] 85
#> [1] 86
#> [1] 87
#> [1] 88
#> [1] 89
#> [1] 90
#> [1] 91
#> [1] 92
#> [1] 93
#> [1] 94
#> [1] 95
#> [1] 96
#> [1] 97
#> [1] 98
#> [1] 99
#> [1] 100
#> [1] 101
#> [1] 102
#> [1] 103
#> [1] 104
#> [1] 105
#> [1] 106
#> [1] 107
#> [1] 108
#> [1] 109
#> [1] 110
#> [1] 111
#> [1] 112
#> [1] 113
#> [1] 114
#> [1] 115
#> [1] 116
#> [1] 117
#> [1] 118
#> [1] 119
#> [1] 120
#> [1] 121
#> [1] 122
#> [1] 123
#> [1] 124
#> [1] 125
#> [1] 126
#> [1] 127
#> [1] 128
#> [1] 129
#> [1] 130
#> [1] 131
#> [1] 132
#> [1] 133
#> [1] 134
#> [1] 135
#> [1] 136
#> [1] 137
#> [1] 138
#> [1] 139
#> [1] 140
#> [1] 141
#> [1] 142
# view results View(full.results)